If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-20x-180=0
a = 5; b = -20; c = -180;
Δ = b2-4ac
Δ = -202-4·5·(-180)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{10}}{2*5}=\frac{20-20\sqrt{10}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{10}}{2*5}=\frac{20+20\sqrt{10}}{10} $
| -10r-8=-8-10r | | 4x-9=3.5x-94 | | 6x+4+33=180 | | 4=-18x-4 | | -1-10w=-7w+5 | | 17.2^2x55.5^2=x^2 | | x/6-7=13 | | 3(x+)=39 | | 10x^2-40x-360=0 | | -29=5(-1+2a)+2a | | 10-m=+1-5m | | 3f+7=19-1f | | 3x-10=+4 | | -4n-2=-1-4n | | 1/2t(t+7)=32 | | 7u^2+14u+7=0 | | 1/4-3=3/4(x-8) | | -4(-2x+2)=16 | | 3g=-5+3g | | x+2x=117 | | c/6+4=10 | | 5x+5(2x-17)=20 | | 10+4w=8w-10 | | -4x-18=15 | | 5x-2(x-2)=7x+4 | | (4−5y)=−2(3.5y−8)= | | 1/3x+7=16 | | 25/6=1/2a | | 9x−6=219x-6=21 | | 0=-4s+4s | | 5/7b+3=8 | | X-1+2x-3=30+4x |